• About
    • Company Overview
    • Management Team
    • Board of Directors
    • Science Advisors
    • Neurology Advisors
    • Ophthalmology Advisors
    • Contacts
  • Science
    • Publications
    • Collaborators
  • Pipeline
    • Infantile Neuroaxonal Dystrophy (INAD)
    • Friedreich’s Ataxia (FA)
    • Amyotrophic Lateral Sclerosis (ALS)
    • Progressive Supranuclear Palsy (PSP)
    • Dry AMD
    • Future Targets
  • Patient Resources
    • Expanded Access Policy
    • Clinical Trials
    • Additional Resources
  • News & Events
    • Press Releases
    • News
    • Events
    • Videos
  • Careers
HomeSciencePublicationsAlpha synuclein aggregation drives ferroptosis

Alpha synuclein aggregation drives ferroptosis

Alpha synuclein aggregation drives ferroptosis: an interplay of iron, calcium and lipid peroxidation

Protein aggregation and abnormal lipid homeostasis are both implicated in neurodegeneration through unknown mechanisms. Here we demonstrate that aggregate-membrane interaction is critical to induce a form of cell death called ferroptosis. Importantly, the aggregate-membrane interaction that drives ferroptosis depends both on the conformational structure of the aggregate, as well as the oxidation state of the lipid membrane.

We generated human stem cell-derived models of synucleinopathy, characterized by the intracellular formation of α-synuclein aggregates that bind to membranes. In human iPSC-derived neurons with SNCA triplication, physiological concentrations of glutamate and dopamine induce abnormal calcium signaling owing to the incorporation of excess α-synuclein oligomers into membranes, leading to altered membrane conductance and abnormal calcium influx. α-synuclein oligomers further induce lipid peroxidation. Targeted inhibition of lipid peroxidation prevents the aggregate-membrane interaction, abolishes aberrant calcium fluxes, and restores physiological calcium signaling. Inhibition of lipid peroxidation, and reduction of iron-dependent accumulation of free radicals, further prevents oligomer-induced toxicity in human neurons.

In summary, we report that peroxidation of polyunsaturated fatty acids underlies the incorporation of β-sheet-rich aggregates into the membranes, and that additionally induces neuronal death. This suggests a role for ferroptosis in Parkinson’s disease, and highlights a new mechanism by which lipid peroxidation causes cell death.

Upload and read more…

About
Science
  • Publications
Pipeline
  • Clinical
  • Preclinical
  • Future Targets
Patient Resources
  • Expanded Access Policy
News & Events
Careers
RETROTOPE, 4300 EL CAMINO REAL, SUITE 201, LOS ALTOS, CA 94022
Copyright ©️ 2015-2021 Retrotope Inc.
You are leaving Retrotope’s website. Retrotope does not guarantee the accuracy or completeness of the information contained on any third-party sites, nor does it endorse any of the opinions or information contained on those sites. Please click CONFIRM to continue. CONFIRM